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Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly
focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused
laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy,
this limit corresponds to the laser pulse group velocity as well as to another limit connected with
the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These
limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical
density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and
background electrons, being snowplowed by the pulse, compensate for the transverse expansion.
The use of composite targets results in a significant increase in maximum ion energy, compared to
a single foil target case.
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I. INTRODUCTION

The laser-driven acceleration of charged particles is the main focus of many existing, being constructed, and projected
high-intensity laser facilities [1–3]. In particular, the acceleration of ions has attracted a significant attention both
theoretically and experimentally [4], due to the many potential applications of laser-accelerated ion beams, including
but not limited to, fast ignition [5], hadron therapy [6], radiography of dense targets [7], injection into conventional
accelerators [8], and nuclear physics studies [9].

Several years ago Particle-in-Cell (PIC) based computer simulations predicted that several hundred MeV or even
GeV ion beams can be produced in laser-matter interactions using modern multi-TW or PW laser systems [10].
Recently, several new acceleration schemes were proposed that offer the possibility of generation multi-GeV or TeV
proton beams [11, 12]. However such schemes would require next generation lasers with even higher peak intensity.
There are several basic laser ion acceleration mechanisms that has been discussed in the literature: (i) Target Normal
Sheath Acceleration (TNSA) [13], (ii) Coulomb Explosion (CE) [14], (iii) Radiation Pressure Acceleration (RPA) [15],
(iv) Magnetic Vortex Acceleration (MVA) [16–18], and (v) the Shock Wave Acceleration (SWA) [19].

TNSA is usually realized in the case of relatively thick targets and poor laser contrast, producing ion beams with
Maxwellian-type energy spectra. In TNSA the laser launches electrons from the front of the target all the way through
the target. As they leave the target from the back, those electrons establish a quasistatic longitudinal electric field
that accelerates ions from the rear side of the target. Most of the experimental results on proton acceleration can be
attributed to the TNSA scheme, with the peak proton energy around 70 MeV [20].

The CE acceleration works for high intensity pulses that are able to remove all the electrons from the irradiated
spot, ideally without disturbing the ion core. The remaining ion core experiences CE due to the noncompensated
positive charge. Usually a two layer (high Z/low Z) target is used to enhance the properties of CE accelerated ions.
The low-Z ions are accelerated in the field of expanding high-Z layer producing a quasimonoenergetic spectrum, which
is required for almost all laser driven ion beam applications. However extremely high intensity and high laser contrast,
not only at the nanosecond scale but also at the picosecond scale make this scheme very challenging for experimental
realization.

The RPA mechanism comes into play when the laser is able to push the foil as a whole by its radiation pressure.
It is the realization of the relativistic receding mirror concept [21]. The role of a mirror is played by an ultra-thin
solid density foil or by plasma density modulations emerging when the laser interacts with an extended under-critical
density target, the so-called hole-boring RPA [22]. The laser pulse is reflected by a co-moving mirror. The problem
of a plane EM wave reflection by a mirror moving with a relativistic velocity was considered by A. Einstein as an
illustration of the Theory of Special Realtivity [23]. The frequency of the reflected radiation is shifted down by a
factor of 4γ2, where γ is the Lorentz factor of the mirror. Thus the energy transferred to the mirror is (1− 1/4γ2)EL,
where EL the energy of the laser pulse. For γ ≫ 1 almost all laser energy is transferred to the foil, which makes this
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scheme very attractive in the ultrarelativistic limit [15, 24, 25]. Recently, there were several papers published that
claim the experimental observation of the onset of this regime of laser ion acceleration [26].

The MVA regime is different from the other three regimes, and is realized when the laser interacts with a Near
Critical Density (NCD) target (TNSA, CE, and RPA rely on the interaction with solid density ultra-thin foils). In
MVA the laser pulse propagates in NCD plasma, it makes a channel in both electron and ion density. When the laser
pulse exits the plasma it establishes strong longitudinal electric fields that can accelerate the ions which are pinched
by the electrons in a thin filament along the laser propagation axis. In the case of long pulses, the acceleration of
helium atoms up to 40 MeV from underdense plasma was observed at the VULCAN laser [27] and the acceleration
of protons up to 50 MeV at Omega EP [28]. Also the experiments with short pulses and cluster jets show that 10-20
MeV per nucleon ions can be generated via such interaction [29]. Like MVA the SWA regime employes an underdense
plasma, where the laser launches a shock wave inside the target. The ions in the bulk of the target are reflected
by this shock wave at twice the velocity of the shock. Ideally such mechanism should produce monoenergetic ions,
since the reflection happens after the shock is detached from the laser pulse. However, the accelerated ion beam will
interact with the background plasma and will be subject to two-stream and filamentation instabilities [30], the latter
determining the width of the accelerated ion spectra.

There are several mechanisms that, through either modification or combination of some of the basic regimes,
enhance the maximum ion energy, number of accelerated ions, or improve their spectrum. For example, the Burn-out-
Afterburner (BOA) [31], which employes an enhanced TNSA, and Directed Coulomb Explosion (DCE) [32], which
is the combination of RPA and CE, are such composite mechanisms. There was also an extensive study connected
with ion acceleration during the induced relativistic transparency of the target [33]. Also the use of composite targets
(low density/high density) was proposed in a number of papers to either inject the ions into accelerating fields or to
enhance the interaction of the laser pulse with the high density part of the target [11, 12, 35, 36].

In this paper we propose to enhance the maximum attainable energy of ions accelerated via RPA by utilizing
composite targets, consisting of a solid density ultra-thin foil placed in front of the NCD slab. The RPA accelerated
ions are subject to a number of factors limiting their maximum energy. Typically RPA requires high laser intensities,
which can only be obtained by tightly focusing laser radiation. In this case the finite spot size effects are important
[37]. Tightly focused laser pulses have a group velocity less than the speed of light in vacuum, which would limit
the maximum attainable ion energy to the energy corresponding to the group velocity [12, 30]. In the framework of
the receding relativistic mirror concept, the energy transferred from the pulse propagating with the group velocity,
βg, smaller than the speed of light in vacuum to the mirror is ∆E ≃ 2γ2β(βg − β)EL. Thus, if β = βg, then there is
no interaction of the laser light with the target, and consequently no energy transfer. Moreover tightly focused laser
pulses force the foil to expand in the transverse direction during the interaction, making it transparent for radiation
and effectively terminating the acceleration. In the case of a composite target, the laser, after beginning to accelerate
the foil, enters the NCD slab and generates a channel in electron and ion density. Inside this self-generated channel
the laser pulse propagates at subluminal group velocity, βg < 1, which is a function of the laser pulse power, over
the depletion length, which is also the acceleration length for the foil. For a tightly focused pulse, the transverse
expansion of the foil is the main limiting factor for the acceleration. The acceleration distance for the expanding foil
is substantially smaller than the depletion length in the NCD plasma. Thus the interaction of a laser pulse with a
composite target leads to the enhancement of the maximum ion energy.

The paper is organized as follows. In section 2 we review the equations of the foil motion under the action of the
laser pulse radiation pressure. In section 3 we consider the effect of the transverse expansion of the target. We present
the results of PIC simulations in section 4 and conclude in section 5. We discuss the properties of the laser pulse
propagating in the NCD plasma and the energy of ions accelerated via the MVA mechanism in Appendices A and B
respectively.

II. RADIATION PRESSURE ACCELERATION

In this section we review the basic properties of the RPA mechanism. The motion of the foil is modeled by an
interaction of an EM wave with a mirror described by the equations [15, 30, 34]. The laser pulse radiation pressure
is taken into account as a force proportional to the EM wave momentum, which in turn is proportional to the EM
wave Pointing vector, S = EL ×BL/4π, where EL and BL are the electric and magnetic fields of the laser pulse. We
assume c = 1 throughout the paper. If we consider the RPA by a plane wave of a non-expanding opaque foil in the
1D approximation [15], then the momentum of the foil is

p =
1

2

[

(1 +W )− 1

(1 +W )

]

. (1)
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Here W = 2FL/nel,

FL =

∞
∫

0

|EL(η)|2
4π

dη (2)

is the laser pulse fluence (incident laser energy per unit area) and nel is the areal density of the foil, with ne the
electron foil density and l the foil thickness. In the ultrarelativistic case the energy of the foil asymptotes to [15]

γmaxβg=1
=

FL
nel

. (3)

The subscript βg = 1 indicates that the laser group velocity is equal to the speed of light in vacuum in this case.
In a more general case of an expanding target and a laser pulse with group velocity smaller than the speed of light in

vacuum the equation of motion of the surface element of a mirror in the laboratory frame of reference can be written
in the following form [30, 38]:

dp

dt
=

P
nel

ν, (4)

where the force is proportional to the laser pressure and directed along the normal to the surface element, denoted by
unit vector ν. The light pressure is determined from balancing the fluxes of the incident, reflected, and transmitted
EM waves in the reference frame, where the particular surface element is at rest. In what follows we will refer to this
reference frame as the moving frame or M-frame, and to the laboratory frame as the L-frame. In the M-frame the
force acting on the foil is

F = (1 + |ρ|2 − |τ |2)(S · ν)ν. (5)

The reflection coefficient, ρ, the transmission coefficient, τ , and the absorption coefficient, α, are related to each other
through energy conservation: |ρ|2 + |τ |2 + |α|2 = 1, and are determined from the solution of the wave equation for
the EM wave interacting with a thin foil in the M-frame [39].

The maximum attainable ion energy for RPA by laser pulses having their peak intensity and consequently peak
fluence on-axis is also achieved by an on-axis surface element of the foil. For this element the laser propagtion
direction coincides with the vector normal to the surface. For a circularly polarized EM wave with amplitude of the
vector-potential, A0, frequency ω, and wave vector k, propagating along the x axis we have

S = ωkA2

0
ex, (6)

where A0 is the amplitude of the EM wave vector potential. Following the results of Ref. [30], we assume that the
EM wave travels with a group velocity βg = k/ω, which is the case for focused pulses and waves traveling inside some
external guiding structure. In the boosted frame of reference, moving with velocity β, we obtain:

ωk = ω2
(βg − β)(1 − ββg)

1− β2
. (7)

Thus the equation of the on-axis surface element motion is

dβ

dt
= κβg(1− β2)1/2(βg − β)(1 − ββg), (8)

where time is measured in units of ω−1, and

κ = (2|ρ|2 + |α|2) ωA2

0

4πnelmi
=

1

2
(2|ρ|2 + |α|2)me

mi

a2(ψ)

ε0
. (9)

Here a = eA/me is the dimensionless vector-potential, ε0 = π(nel/ncrλ) is the parameter governing the transparency
of the thin solid density target [39], ncr = meω

2/4πe2 is the critical plasma density, e and me are the electron charge
and mass respectively, ψ = (t − x/βg) is the phase, and mi is the ion mass. The reflection coefficient is determined
from the solution of the wave equation in the rest frame of the foil [34, 39]:

ρ =
ǫ̃0
a0

[

b

(1 + b2)1/2

]

, (10)
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b =
1

21/2

{

[

(a2
0
− ǫ̃2

0
− 1)2 + 4a2

0

]1/2
+ (a2

0
− ǫ̃2

0
− 1)

}1/2

, (11)

where γ = (1 + p2)1/2, and ǫ̃0 = γǫ0, which accounts for the fact that the parameter ǫ0 is not a relativistic invariant
[34]. We notice that the condition a0 = ǫ0 is considered to mark the optimal regime of ion acceleration [40]. However
this is true only in the case of non relativistic ion energies. In the relativistic case, the condition transforms into
a0 = γǫ0 [34]. In what follows we assume total reflection and set |ρ| = 1. For β = βg, the right hand side of Eq. (8),
i.e., the radiation pressure is equal to zero. This will result in the appearance of the maximum attainable velocity
equal to βg for the ions accelerated by the RPA of an EM wave with βg < 1. The equation (8) can be solved in
quadratures. For the sake of brevity we assume that initially the foil was at rest, β(0) = 0. This yields the following
expression:

{

ln
(1− ββg + (1− β2

g)
1/2(1− β2)1/2βg

(βg − β)(1 + (1 − β2
g)

1/2)
− βg

[

arctan
(1− β2

g)
1/2(1− β2)1/2

βg − β
− arccosβg

]}

= βg(1 − β2

g)
3/2Kβ(t)., (12)

where Kβ(t) =
t
∫

0

κdt′. In order to get an idea of the foil’s behavior as its velocity approaches βg, we assume that the

EM field is constant, then Kβ(t) = κt and for t → ∞ only the term with ln(βg − β) survives. Thus we obtain the
following asymptotic expression for the ion velocity:

β = βg − exp
(

−βg(1 − β2

g)
3/2κt

)

. (13)

From Eq. (13) one can see that the foil velocity approaches the laser group velocity exponentially, but never exceeds
it. Thus the ion energy is limited by γg = (1 − β2

g)
−1/2 and the time needed to accelerate the foil to the energy

approaching γg scales logarithmically with γ:

t =
γ3g
κβg

ln

[

2γgγ

γg − γ

]

. (14)

We should mention here that, for finite duration laser pulses, the group velocity limit will manifest itself only for
γmaxβg=1

> γg, i.e., in the case where the maximum accelerated ion energy by the same pulse (but with βg = 1), would

exceed the energy determined by the group velocity.
In Fig. 1 we present the numerical solution of Eq. (12) for a Gaussian pulse with a duration of 27 fs (10 cycles),

λ = 800 nm wavelength, focal spot of w0 = 1.35λ, which corresponds to an f-number of f/D = 1.5, interacting with
a 0.25λ thick hydrogen foil with an electron density of 400ncr. The evolution of the maximum ion velocity (Fig. 1a)
and maximum ion energy (Fig. 1b) are shown for three different values of the averaged laser power (1 PW, 1.8 PW,
and 3.6 PW) and two values of group velocity βg = 1 and βg = 0.986 (γg = 6, w0 = 1.35λ, f/D=1.5 [42]). For P=1
PW, the evolution of ion velocity (and energy) is very similar for βg = 1 and βg < 1 cases, since γmaxβg=1

< γg and

the effects group velocity are small. For P=1.8 PW, one can see a small difference between these two cases, which
is mainly due to different dephasing between the pulse and the foil lengths. We will address this effect below. For
P=3.6 PW, γmaxβg=1

> γg, which leads to significant differences between βg = 1 and βg < 1 cases, as expected from the

analytical analysis. The βg < 1 cases are limited by βg for velocity and γg − 1 for energy, while the βg = 1 cases are
only limited by the total energy stored in the laser pulse.

We notice that for P=1.8 PW, the βg < 1 case results in higher maximum ion velocity (energy). This is due to the
fact that, when the foil reaches relativistic velocities, the dephasing between the foil and the laser plays an important
role. The pulse with βg < 1 will interact with the foil longer, thus accelerating it to higher energies. If we rewrite Eq.
(8) in terms of the phase ψ = (t− x/βg), then

dβ

dψ
= κβ2

g(1− β2)1/2(1− ββg). (15)

This equation can also be solved in quadratures:

1

βg(1− β2
g)

1/2

{

arctan

[

(1− β2
g)

1/2(1 − β2)1/2

βg − β

]

− arccosβg

}

= Kβ(ψ), (16)
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where Kβ(ψ) =
ψ
∫

0

κdψ′. From Eq. (16) we obtain for the surface element velocity:

β =
βg sin

2R− (1− β2
g) cosR

1− β2
g cos

2 R
, (17)

where

R = Kβ(ψ)β
2

g(1− β2

g)
1/2 + arccosβg. (18)

Since 0 ≤ β ≤ βg, the parameter R is defined on the interval arccosβg ≤ R ≤ π/2. In order to compare the cases
βg = 1 and βg < 1 we assume that Kβ(ψ) = κψ and write down the expression for the final velocity, in the case
βg = 1, in the following form

β0 =
κψ (2 + κψ)

2 + 2κψ + (κψ)
2
. (19)

In the case of βg < 1 we use Eq. (16), assume that βg → 1, expand the lefthand side around βg = 1, and solve with
respect to β, yielding

β = β0 +
16

3

κψ (1 + κψ)
[

2 + 2κψ + (κψ)
2
]2

(1− βg) . (20)

Thus one can see that, due to slower dephasing, the laser pulse with βg < 1 accelerates the foil to higher energies
than the laser pulse with βg = 1. However this consideration is valid only for β < βg. This dephasing is illustrated
in Fig. 1c, where the evolution of the value of the field amplitude, a0(x), at the foil is shown. For the particular case
of P=1.8 PW wee see that βg < 1 curve has higher values than the βg = 1 curve for an extended period of time. In
the case of a 3.6 PW laser, the pulse becomes phase locked with the foil, i.e., it co-propagates with it, but can not
transfer any amount of energy to the foil.

From Eq. (16) we can estimate the duration of the pulse for a given laser power for the pulse to become phase
locked with the foil. We write down an equation for the phase corresponding to β = βg:

Kβ(ψmax) =
1

β2
g(1− β2

g)
1/2

(π

2
− arccosβg

)

, (21)

which for Kβ(ψ) = κψ, i.e., for constant EM field, is reduced to

ψmax =
1

κβ2
g(1− β2

g)
1/2

(π

2
− arccosβg

)

, (22)

or for βg → 1, ψmax ≈ (π/2)(γg/κ). The Eq. (21) indicates the minimal pulse duration for a given intensity that is
needed to accelerate a foil up to the velocity equal to the group velocity of the laser pulse, which basically states a
well known fact that, in the ultra relativistic case, almost all the laser energy is transferred to the ions [15]. Moreover
Eq. (15) is defined on the interval 0 < ψ < ψmax. Since we can rewrite κ as κ = γmaxβg=1

/τ , the maximum phase is

ψmax =
π

2

γg
γmaxβg=1

τ. (23)

If (π/2)γg > γmaxβg=1
, then ψmax > τ and the foil can not be accelerated to γg, since there is not enough energy in the

pulse. In this case the difference in maximum energy evolution in the cases of βg = 1 and βg < 1 should be small.
For ψmax < τ the difference should be rather large, since for βg < 1 the laser pulse would be able to accelerate ions
only up to γg − 1, while in the case of βg = 1 the ion maximum energy is determined by the total energy of the
pulse. The dependence of the maximum ion energy evolution on the duration of the pulse for two cases of βg = 1 and
βg < 1 is illustrated in Fig. 1d. Here the laser pulse is chosen to have a rectangular longitudinal profile. The curves
corresponding to 15 fs laser pulse duration are indistinguishable for βg = 1 and βg < 1, which indicates that the group
velocity effects are almost negligible. In the 30 fs case there is a slight difference, which is due to the dephasing of the
laser pulse and the foil, and 60 fs and 120 fs cases demonstrate a significant difference. The βg < 1 curves are limited
by (γg − 1), while βg = 1 curves go beyond this value. We can also see that βg < 1 curves for 60 fs and 120 fs are
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FIG. 1: (a) The dependences of the foil velocity on time for three values of the averaged laser pulse power: (1) 1 PW, (2) 1.8
PW, and (3) 3.6 PW for the cases of βg = 0.986 (solid curves) and βg = 1 (dashed curves), with the laser pulse duration 30
fs. The horizontal line marks βg. (b) The dependence of the foil energy on time for three values of the laser pulse power: (1)
1 PW, (2) 1.8 PW, and (3) 3.6 PW for the cases of βg = 0.986 (solid curves) and βg = 1 (dashed curves), with the laser pulse
duration 30 fs. The horizontal line marks γg − 1. (c) The evolution of the laser pulse EM field amplitude at the foil for three
values of laser power: (1) 1 PW, (2) 1.8 PW, and (3) 3.6 PW for the cases of βg = 0.986 (solid curves) and βg = 1 (dashed
curves). (d) The dependence of the foil energy on time for four values of the laser pulse duration: (1) 15 fs, (2) 30 fs, (3) 60
fs, and (4) 120 fs for the cases of βg < 1 (solid curves) and βg = 1 (dashed curves), with the laser pulse power 1.8 TW. The
horizontal line marks γg − 1. The asterisk mark the (βg = 1)-curves. The density of the foil is ne = 400ncr and the thickness
is l = 0.25λ.

almost indistinguishable, since only the ∆τ = ψmax < τ part of the pulse is able to accelerate the ions. There is no
such similarity between the 60 fs and 120 fs cases, when βg = 1.

The limiting factor of βg < 1 can also be described in terms of the phase evolution. It is governed by the following
equation

dψ

dt
=
βg − β(ψ)

βg
, (24)

which can be solved in quadratures:

t = βgγ
2

g

{

βgψ − γg
κβ2

g

[

ln

(

1− 2

1 + cotR+ cscR

)

− ln

(

− 1

γgβg
+

(

1 +
1

γ2gβ
2
g

)1/2
)]}

. (25)

If t → ∞, then depending on the ratio of γmaxβg=1
and γg we have the following estimates for the phase evolution. (i)

When γmaxβg=1
< γg, the acceleration processes for βg = 1 and βg < 1 are indistinguishable, R≪ π/2:

ψ =
t

γ2gβ
2
g

. (26)

(ii) In the opposite case of γmaxβg=1
> γg, the acceleration process is greatly affected by the existence of the fundamental

limit on the maximum attainable ion energy, resulting in a different equation for the phase evolution:

ψ = ψmax −
2γg
κβ2

g

exp

(

−κβg
γ3g

t

)

. (27)

Here we see that ψ approaches ψmax but never exceeds it. Thus a laser pulse with duration τ > ψmax will accelerate
the foil up to β = βg, but the part of the pulse characterized by the phase values ψmax < ψ < τ will not be able to
reach the foil and will not take a part in the acceleration process.
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FIG. 2: The dependence of the phase ψ on time for a 1 PW, f/D=1.5 laser pulse for four durations of the pulse: 13 fs (1), 27
fs (2), 54 fs (3), and 108 fs (4). The maximum phase from Eq. (23) is plotted as a dashed horizontal line. The density of the
foil is ne = 400ncr and the thickness is l = 0.25λ.

In Fig. 2 we demonstrate the dependence of the phase on time. For γmaxβg=1
< γg (curves 1 and 2) the phase tends

to infinity as the time tends to infinity, which means that the pulse has accelerated the foil to some energy and is
no longer interacting with the foil. In the case γmaxβg=1

> γg (curves 3 and 4) the phase tends to ψmax, i.e., the pulse

becomes phase locked with the foil. When phase locked, accceleration has stopped, since the laser is no longer able
to transfer energy to the foil. Thus the laser pulse and the foil co-propagate without interaction and ψ = ψmax
corresponds to the foil reaching the velocity equal to the group velocity of the pulse.

Thus, following the approach of Ref. [12] we showed that there exists a fundamental limit on the maximum
attainable ion energy in the RPA regime and it is equal to the γ-factor of the driving laser pulse. This limit greatly
affects the acceleration process for the pulses with γmaxβg=1

> γg. We also identified a minimum laser duration needed

to reach the maximum accelerated ion energy for fixed laser intensity, IL:

τmin =
π

2

γgnel

IL
. (28)

III. TRANSVERSE EXPANSION OF THE TARGET

A group velocity smaller than the vacuum light speed appears naturally in the case of tightly focused laser pulses
[1], which diverge rather quickly after passing through the focus. Assuming that this divergence forces the irradiated
part of the foil to expand, following the increase of the laser spot size, we study how the transverse expansion
of the target limits the maximum attainable ion energy during the RPA, and whether this limitation dominates
over the fundamental effects of the group velocity. Assuming that the field of the pulse can be given by the paraxial
approximation, characterized by the laser pulse waist at focus, w0 and the Rayleigh length LR = πw2

0/λ, the evolution

of the laser pulse waist as it travels away from focus is w(x) = w0

[

1 + (x/LR)
2
]1/2

, the amplitude of the field scales

with the distance from the focus as a(x) = a0
[

1 + (x/LR)
2
]

−1/2
, and the group velocity is βg ≃ 1−1/k2w2

0
[42]. Since

we are interested in the maximum ion energy, we consider RPA of an on-axis element of the foil. The intensity profile
near the axis can be approximated by an expanding spherical cup with curvature radius equal to the laser waist, w(x).
The on-axis element of the foil can also be approximated by an expanding spherical cup with the curvature w(x) and

areal density equal to nel = n0l0
[

1 + (x/LR)
2
]

−1
and εe(x) = εe(0)

[

1 + (x/LR)
2
]

−1
. Substituting the field and areal

density into Eq. (8), we see that the right hand side of Eq. (8) depends on the distance from the focus only through
the reflection coefficient [34]:

dβ

dt
= |ρ(x)|2me

mi

a2(ψ)

εe
βg(1− β2)1/2(βg − β)(1− ββg), (29)

where

ρ(x) =
ǫ̃e(x)

a(x)

[

b(x)

(1 + b(x)2)1/2

]

, (30)

and

b(x) =
1

21/2

{

[

(a(x)2 − ǫ̃2e(x)− 1)2 + 4a2(x)
]1/2

+ (a2(x) − ǫ̃2e(x) − 1)
}1/2

. (31)
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FIG. 3: (a) The evolution of the maximum ion energy for two values of f-number: f/D=1 (blue curves, 1, 2, and 3) and f/D=1.5
(magenta curves, 1∗, 2∗, and 3∗). The solid curves (1 and 1∗) are the solutions of Eq. (29) with laser divergence and target
expansion taken into account. The dotted curves (2 and 2∗) are the solutions of Eq. (8) with βg = 1 and dashed curves (3 and
3∗) are the solutions of Eq. (8) with βg < 1. (b) The evolution of EM field amplitude at the foil corresponding to the curves
in Fig. 3a. (c) The evolution of the maximum ion energy for f/D=1 (blue curves, 1 and 1∗), f/D=1.5 (magenta curves, 2 and
2∗), and f/D=2 (red curves, 3 and 3∗). The curves 1, 2, and 3 are the solutions of Eq. (29), while the curves 1∗, 2∗, and 3∗

correspond to the guided case, where the laser is not diffracting and the reflection coefficient is equal to one. (d) The evolution
of EM field amplitude at the foil corresponding to the curves in Fig. 3c. Laser pulse power is 1.8 PW, duration is 30 fs, the
foil thickness is 0.25λ, and density is ne = 400ncr .

In what follows we solve Eq. (29) numerically, taking into account transverse expansion of the foil and laser pulse
divergence. The comparison between the cases with the transverse expansion taken into account and without is shown
in Fig. 3 for a 1.8 PW laser pulse interacting with a 0.25λ thick hydrogen foil with the density of ne = 400ncr for
three values of the f-number: f/D = 1, f/D = 1.5, and f/D = 2. In order to demonstrate the effect of transverse
expansion and laser divergence we show in Fig. 3a two sets of curves: one corresponding to f/D=1, the other to
f/D=1.5. Each set consists of three curves: two curves with no target expansion and laser divergence, with βg = 1
and βg < 1, and the third one with transverse expansion and βg < 1. As one can see this effect significantly reduces
the maximum ion energy by switching off the acceleration early. This switching off can clearly be seen in Fig. 3b,
where the evolution of the reflected EM field amplitude at the foil is given for each of the curves in Fig. 1a. If the
transverse expansion is taken into account, the EM field amplitude is much lower, which has a direct consequence in
lower maximum ion energy.

The utilization of an external guiding structure may relax the limits on maximum attainable ion energy. To model
such interaction we solve Eq. (8), assuming that the laser pulse is guided by a self-generated channel with a transverse
size of w0 = 0.9λ (f/D = 1), w0 = 1.35 (f/D = 1.5), and w0 = 1.8 (f/D = 2), and the foil stays opaque for the
pulse (|ρ| = 1). The solutions for such configuration are shown by dashed curves in Fig. 3c. One can see that the
external guiding structure significantly enhances the maximum attainable ion energy, which is now limited by the laser
group velocity in such a structure. This limit is illustrated in Fig. 3d, where the evolution of the reflected EM field
amplitude is shown. The fields corresponding to the cases with guiding demonstrate the phase locking with the ions,
i.e., they co-propagate with the foil, but are not able to transfer any energy to it. In principle, a composite target,
consisting of a thin foil, followed by a near critical density (NCD) slab, may provide an example of such guiding. The
laser pulse will accelerate the irradiated part of the foil in the self-generated channel in the NCD plasma [17]. Though
the foil density will drop due to the transverse expansion, the NCD plasma electrons being snowplowed by the pulse
would provide an opaque density spike, which being pushed by the radiation pressure would drag the ions of the foil
with it. Thus such configuration is similar to the one considered above: the laser pulse is guided with no diffraction
and, although the density of ion decreases, the reflection coefficient is unity.
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FIG. 4: The simulation setup: laser is focused on a thin foil, which is followed by a near critical density plasma.

IV. COMPOSITE TARGET RPA: RESULTS OF 2D PIC SIMULATIONS

In this section we present the results of 2D PIC simulations (using the code REMP [41]), of an intense laser
interacting with two types of targets: (i) a single thin solid density foil and (ii) a thin solid density foil followed by
an NCD plasma slab (a composite target). As was shown in the previous section a composite target should provide
guiding for the laser pulse and compensate for the transverse expansion of the foil, leading to higher proton energies
than in the case of a single foil. The simulation box is 100 × 60λ2, dx = dy = 0.025λ, dt = 0.0125 × 2π/ω, and
the number of particles per cell is 100. The Gaussian laser pulse is initialized at the left border with dimensionless
potential a0 = 100, waist w = 4λ and duration τ = 30 fs, which corresponds to the average power of 1.8 PW. The
pulse is focused with f-number f/D = 2 at the left front size of the target, which is placed 16λ away from the left
border. The composite target consists of a fully ionized hydrogen foil and a hydrogen NCD plasma slab placed right
behind the foil. The typical simulation setup is shown in Fig. 4.

In Fig. 5 we present the ion density distributions for the cases of a composite target and a single foil at different
moments in time. The laser peak power is 1.8 PW and is focused with f-number=2 at the foil. The foil is 0.25λ
thick and the NCD plasma slab is 50λ thick and its density is equal to critical one, ne = ncr. In both cases the
transverse expansion of the target plays an important role, leading to a significant deformation of the foil and density
redistribution. As a result the density near the laser axis is reduced. In the case of a single foil it means that the
foil became transparent for radiation and the acceleration has stopped. In the case of a composite target it is not
so, since the background electrons from the NCD plasma being snowplowed by the laser compensate for the density
decrease. Such electron behavior is shown in Fig. 6. In the case of a single foil the electrons are subjected to transverse
expansion, which is similar to that shown in Fig. 5 for the ion density distribution. In the case of a composite target,
the electrons that were originally in the foil are also pushed to the side but the NCD electrons being snowplowed by
the laser pulse form a dense shell in front of the laser, providing a robust relativistic mirror for proton acceleration
up to the end of the NCD plasma slab. The different behavior of the electron component of plasma in the cases of a
single foil and a composite target should translate into different values of the maximum ion energy.

The evolution of the maximum ion energy in both cases is shown in Fig. 7 for two densities of the foil: ne = 225ncr
(Fig. 7a) and ne = 400ncr (Fig. 7b). One can see that in the case of a composite target the ion maximum energy
is significantly higher, which is due to the longer acceleration length in the NCD plasma. In the case of a single foil,
the target becomes transparent at t ≈ 35, when, according to Fig. 5, the density on-axis drops several times below
the initial one. The final energy for the single foil is in good agreement with the analytical results of the previous
section, shown in Fig. 3. The maximum ion energy in the case of a composite target should be determined by the
group velocity of the laser in the self-generated plasma channel. However, due to the fast depletion of the pulse as
well as its reflection at laser-plasma interface, the laser group velocity can not unambiguously be determined from
the results of PIC simulations. In this case, we chose the velocity of the of the laser-plasma interface, βI , as the
characteristic quantity for ion acceleration in the channel. Using results of Ref. [45] we can find the normalized
velocity laser-plasma interface from the condition that it takes the depletion energy time, tdepl, for the laser pulse tail
to reach the laser-plasma interface. This yields

βI = βg

(

1− ne
ncra

)

≈ βg

(

1− 1

γ2g

)

= β3

g , (32)

i.e.,

γI ≈
γg
31/2

(33)

(for the definition of the group velocity of the laser pulse inside the self-generated channel in the NCD plasma, γg,
see Appendix A). For the case considered γI ≈ 5, which is in good agreement with the results of PIC simulations,
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FIG. 5: The evolution of the density of the ions originating from the foil during the laser pulse interaction with a composite
target (a-c) and a single foil (d-f) at t=35 (a,d), t=50 (b,e), t=75 (c,f).

FIG. 6: The evolution of the density of the electrons during the laser pulse interaction with a composite target (a-c) and a
single foil (d-f) at t=35 (a,d), t=50 (b,e), t=75 (c,f).

taking into account pulse reflection during the initial interaction with the foil. In Fig. 7, the energy γI − 1 (from PIC
results) is shown by thin red curves. Note that γI−1 remains constant during the pulse propagation through the NCD
plasma, but after the pulse depletion becomes significant, it decreases, marking the end of the ion acceleration for
both values of the foil density studied in simulations. We note that the ion energy is not able to reach the maximum
value of γI − 1 due to the laser pulse depletion in NCD plasma.

In order to further illustrate the differences between these two cases, we show in Fig. 8 the spectra of protons in
the case of a composite target (Fig. 8a) and a single foil (Fig. 8b) at different moments in time. While at t = 35 the
spectra look similar, at t = 50 the difference becomes pronounced, since a single foil became transparent for radiation,
marking the termination of the acceleration process. Moreover, at t = 75, in the case of a composite target, the
protons gained almost 50% of their energy at t = 50, and, in the case of a single foil, the gain is as low as 10%.

In Fig. 9a we show that the protons can originate from different parts of a composite target. If we take such target
apart, each of its parts, when irradiated by an intense laser, can generate high energy protons. We compared the
maximum energy evolutions in all these cases to find that the protons from the foil, in the case of a composite target,
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FIG. 8: The evolution of the ion spectrum originating from the foil during the laser pulse interaction with a composite target
(a) and a single foil (b) at t=35 (red curve), t=50 (blue curve), and t=75 (black curve). The parameters of the interaction are
the same as in Fig. 3.

acquire maximum energy of 2.4 GeV. Note that the energy of protons from a single NCD slab is in good agreement
with the results of the analytical estimate (see Appendix B). Thus, the addition of an NCD plasma slab at the back
of a thin foil, is a crucial feature of the target design.

In Fig. 9b we show the dependence of the maximum ion energy on the density of the NCD plasma. Since the
acceleration is characterized by the velocity of the laser-plasma interface, it is plausible to assume that the energy
of ions would scale as γI − 1 scales with density. One can see from Fig. 8b that maximum ion energy has similar
dependence on density as γI − 1. Here we took into account the fact that a significant part (∼ 50%) of the laser pulse
was reflected at the foil before the remaining part of the laser pushed the irradiated part of the foil inside the NCD
plasma. However, for low densities, the similarity between γI−1 and the maximum proton energy fails, due to the fact
that the laser propagation through such plasma can no longer be described as a propagation inside a self-generated
channel [17].

Thus we identified the dependence of the maximum ion energy on the density of the NCD plasma and the fact that
this energy is characterized by the velocity of the laser-plasma interface. We compared the cases of a single foil and
a composite target, showing that in both cases the transverse expansion significantly modifies the target. In the case
of a single foil, this modification leads to the termination of the acceleration due to the increased transparency of the
target. In the case of a composite target the NCD electrons being snowplowed by the laser pulse form a dense shell
in front of the laser, providing a robust relativistic mirror for proton acceleration.
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slab for two values of the foil density ne = 225ncr (blue curve , 1) and ne = 400ncr (red curve, 2). The dashed curve (3) marks
the maximum proton energy in the case of a single foil. The dotted curve is the dependence of γI − 1 on density.

V. CONCLUSIONS

We considered laser driven acceleration of ions in the radiation pressure acceleration (RPA) regime, taking into account
the fact that the laser group velocity can be smaller than the light vacuum speed. We also included the deformation of
the thin foil target, i.e., the transverse expansion in the equations of motion of the foil. This allowed us to identify two
factors that limit the maximum attainable in the RPA ion energy: (i) the fundamental effect of the laser pulse group
velocity being less than vacuum light speed, and (ii) the transverse expansion of the target, which plays a major role
when tightly focused pulses are used. The first one results in the energy transfer from the pulse to the foil vanishing
as the velocity of the foil approaches the group velocity of the laser. Thus the ion velocity can not exceed the laser
group velocity. The transverse expansion of the target effectively decreases the density of the foil, eventually making
it transparent for radiation. For realistic parameters of the laser foil interaction the effect of the transverse expansion
dominates over the group velocity effect.

We showed that the utilization of an external guiding may relax the constraints on maximum attainable ion
energy. Such guiding should accommodate the transverse expansion of the ion component without the foil becoming
transparent. We showed that a composite target, a thin foil followed by an NCD slab, is an example of such guiding
structure. The NCD slab provided guiding of the laser pulse during the acceleration process as well as the electrons
to replace the ones that are expelled due to the transverse expansion. The comparison of a single foil RPA and a
composite target RPA shows that in the latter case the ions can gain the energy several times larger than in the
former case, thus greatly increasing the effectiveness of the RPA regime of laser driven ion acceleration. In such a
configuration the group velocity effects begin to dominate and determine the maximum achievable ion energy.
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Appendix A: Laser propagation in Near Critical Density Plasma

Here we address the propagation of an intense laser pulse in a near critical density plasma. The proposed composite
target concept depends on the self-channeling of an intense laser pulse in such a plasma. The determination of the
channel parameters, radius and length, the parameters of the laser pulse mode, which will propagate in this channel,
are prerequisite for the study of the proposed mechanism. In principle, the propagation of an intense laser pulse in
the relativistically underdense plasma can be approximated by the propagation of an EM wave in a waveguide [17].
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It is connected with the fact that, as the laser pulse propagates in such a plasma, the ponderomotive force of the
laser expels electrons and ions from the region of the laser pulse. However due to much smaller charge to mass ratio
the time of ion response is much larger than that of electrons, which leads to the formation of a positively charged
region just after the front of the laser pulse. The expelled electrons are subject to the laser ponderomotive force and
the attracting charge separation fields. This results in the formation of an electron density channel with high density
walls. After the laser pulse passes, the ions also expand in the transverse direction forming an ion density channel.
This is partly due to the response to the ponderomotive force and partly due to the coulomb explosion of a positively
charged channel background. The laser radiation at the early stages of channel evolution is not able to penetrate
these walls and is totally contained inside the channel. Then, the laser mode with lowest transverse frequency, an
H-wave (Ex = 0), will propagate through this channel:

Hx = AJ1(Ωr) cos (ωt− kx) , Er =
iω

Ω2

∂Hx

∂r
, Hr =

ω

Ω2

∂Hx

∂r
, (A1)

where J1 is the Bessel function of the first kind and Ω = 1.84/R; R is the radius of the channel, and A =
(2Ω/ω)(mωa/e), here a is defined as the amplitude of the transverse electric field. The radius of the channel can be
estimated from balancing the electron energy gains from the laser pulse EM field and from the field generated by
the positive charge of ions in the channel: Rch =

√
a (ω/ωp)λ/π. The group velocity of such an EM wave in the

waveguide is βg =
[

1− (1.84/2)2(ωp/ω)
2a−1

]

. The total energy of such a pulse in the channel is

EchL = πR2τa2mencrK, (A2)

where τ is the pulse duration and the factorK comes from the integration over transverse coordinates and the duration
of the laser pulse

K =

√

π

32

[

J1(κR)
2 − J0(κR)J2(κR)

]

≈ 1

13.5
. (A3)

Here J0 and J2 are Bessel functions of the zero and second order respectively. The relation between the amplitude of
the laser pulse vector-potential and the laser pulse power, P = EchL /τ , is

ach =

(

2

K

P

Pc

ne
ncr

)1/3

, (A4)

where Pc = 2m2

e/e
2 = 17 GW. For P = 1 PW and ne/ncr = 1, the relation yields a ≈ 116. As was shown in Ref. [17]

the depletion length of the laser pulse in the NCD plasma is Lch = a(ncr/ne)LpK, where Lp is the length of the laser
pulse. Using Rch =

√
a (ω/ωp)λ/π we can write the depletion length, normalized to pulse length, and the radius of

the channel, normalized to laser wavelength, in terms of the laser pulse power:

Lch
Lp

= 21/3K2/3

(

ncr
ne

)2/3
P

Pc
, (A5)

Rch
λ

=
1

π

(

ncr
ne

)1/3(
2P

KPc

)1/6

. (A6)

The γ-factor, corresponding to the group velocity of the EM wave in the waveguide, neglecting pulse depletion and
evolution, is

γchg ∼
(

2P

KPc

)1/6 (
ncr
ne

)1/3

. (A7)

If a thin foil is accelerated by the radiation pressure of an EM pulse inside this channel, then γchg is the maximum
achievable energy of the ions.

Appendix B: Maximum ion energy via MVA mechanism

In what follows we estimate the maximum ion energy that can be gained via the MVA mechanism in an NCD
plasma [46]. In the MVA regime, the acceleration is achieved by an electric field at the back of the target, which is
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generated by, and is of the order of, the magnetic field (Bch) of electrons, accelerated by the laser pulse in plasma in
the forward direction, as they exit the target. This EM field, associated with the electron current leaving the target
expands along the back surface of the target, while the magnetic field flux is conserved. The maximum energy gain
of a charged particle in such an expanding field is EHe ∼ eZHeBchRch.

Let us assume that the electron current consists of all the electrons that initially were in the volume πR3

ch, which is
the volume of a cavity left in the wake of a laser pulse, ensuring that the fields of electrons and ions are compensated
outside the cavity and the strong fields exist only inside. As the electrons move through the charged ion background,
they experience a plasma lensing effect [43], i.e., they are pinched towards the central axis and the radius of the electron
beam is determined from the balance of the transverse electric field of the ion column, Ei = 2πeneRb, which in the
reference frame of an e-beam is E′

i = γeEi, and the self field of an electron beam, which is equal to E′

e = 2πen′

eRb.
From the condition E′

i = E′

e we obtain Rb = Rch/γe. Here γe is the Lorentz factor of the bulk of electrons accelerated
forward. In the regime of laser pulse interaction with a NCD plasma, the electrons are continuously injected in the
cavity behind the laser pulse, leading to the formation of an electron current, which is dominated by low energy
electrons.

The characteristic energy of these electrons is the injection energy, which can be obtained from the condition on the
electron velocity to be equal to the group velocity of an EM pulse propagating in a waveguide of radius Rch: γe = γchg
(A7). The magnetic field, generated by these electrons, is Bch(Rb) = 2πeneRchγ

2
e at r = Rb. Then the energy gain

of an ion in the electric field at the back of the target is

EHe = me 2π
2ZHe

(

ne
ncr

)(

Rch
λ

)4

, (B1)

which gives an upper estimate for the ion energy gain in the MVA regime. For example, for a 1 PW laser pulse and
ne = ncr, the protons energy is EH ≈ 500 MeV. From Eq. (B1), we see that the ion energy scales with the laser pulse
power as P 2/3. The scaling was derived assuming the optimal match between the laser pulse and the plasma, i.e., the
target length is equal to the laser pulse depletion length. We should mention here that the MVA regime is relevant
for ion acceleration from targets with densities not far from critical [17]. For lower densities, laser pulse filamentation
and Langmuir wave generation prevent efficient channel generation. At higher densities other mechanisms of laser ion
acceleration come into play, and the target thickness, which is equal to the depletion length, is of the order the pulse
length or smaller, which is outside the regime of MVA applicability.
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